General Parametric Solution of the Panlevé - Ince Nonlinear ODE and of Some Relative Equations in Mathematical Physics
نویسندگان
چکیده
In this paper, we prove that the modified PainlevéInce (PI) equation, the force-free Duffing nonlinear type oscillator (DO) and the Lotka-Volterra (LV) nonlinear ordinary differential equation ODEs can be solved in general parametric form. The developed mathematical methodology and the extracted results, being expressed by way of new theorems including admissible functional transformations and substitutions, generalize the corresponding ones given by V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan. Index Terms — Force-free Duffing Oscillator, modified, LotkaVolterra equation, parametric solution Painlevé-Ince equations.
منابع مشابه
The B"{a}cklund transformation method of Riccati equation to coupled Higgs field and Hamiltonian amplitude equations
In this paper, we establish new exact solutions for some complex nonlinear wave equations. The B"{a}cklund transformation method of Riccati equation is used to construct exact solutions of the Hamiltonian amplitude equation and the coupled Higgs field equation. This method presents a wide applicability to handling nonlinear wave equations. These equations play a very important role in mathemati...
متن کاملSolving Volterra's Population Model via Rational Christov Functions Collocation Method
The present study is an attempt to find a solution for Volterra's Population Model by utilizing Spectral methods based on Rational Christov functions. Volterra's model is a nonlinear integro-differential equation. First, the Volterra's Population Model is converted to a nonlinear ordinary differential equation (ODE), then researchers solve this equation (ODE). The accuracy of method is tested i...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملNUMERICAL SOLUTION OF THE MOST GENERAL NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS BY USING TAYLOR POLYNOMIAL APPROACH
In this study, a Taylor method is developed for numerically solving the high-order most general nonlinear Fredholm integro-differential-difference equations in terms of Taylor expansions. The method is based on transferring the equation and conditions into the matrix equations which leads to solve a system of nonlinear algebraic equations with the unknown Taylor coefficients. Also, we test the ...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کامل